
Universes à la Martin-Löf

U : Type
tr : U → Type
π : Π A : U, ((tr A)→ U) → U
nat : U
eq : Π A : U, (tr A)→ (tr A)→ U
σ : Π A : U, ((tr A)→ U) → U
sum : U → U → U
False : U

tr (π A B) ▷ Π x:tr A. tr (B x)
tr nat ▷ N
tr (eq A a b) ▷ a=A b
tr (σ A B) ▷ Σ x:tr A. tr (B x)

tr (sum A B) ▷ A+B

tr False ▷ ⊥

Predicative quantification over types in MLTT
Keep MLTT as presented in the course and add:

U : Type
tr : U → Type
π : Π A : U, ((tr A)→ U) → U
nat : U
eq : Π A : U, (tr A)→ (tr A)→U
σ : Π A : U, ((tr A)→ U) → U
sum : U → U→ U
False : U

tr (π A B) ▷ Π x:tr A. tr (B x)
tr nat ▷ N
tr (eq A a b) ▷ a=A b
tr (σ A B) ▷ Σ x:tr A. tr (B x)

tr (sum A B) ▷ A+B

tr False ▷ ⊥

Idea: if we quantify over U, we quantify over all types ! (except U)

u : U tr u ▷ U would give Type : Type and a paradox

Embedded Universes
U₁ : Type
tr : U₁ → Type
π : Π A : U₁, ((tr A)→ U₁) → U₁
nat : U₁
eq : Π A : U₁, (tr A)→ (tr A)→U₁
σ : Π A : U₁, ((tr A)→ U₁) → U₁
sum : U₁ → U₁→ U₁
False : U₁
u : U₁

tr (π A B) ▷ Π x:tr A. tr (B x)
tr nat ▷ N
tr (eq A a b) ▷ a=A b
tr (σ A B) ▷ Σ x:tr A. tr (B x)

tr (sU1m A B) ▷ A+B

tr False ▷ ⊥
tr u ▷ U

U comprises all types including U but not U1

Inductive-recursive definition

U1 : Type
tr : U1 → Type
π : Π A : U1, ((tr A)→ U1) → U1 tr (π A B) ▷ Π x:tr A. tr (B x)

What is this object U ?

An inductive definition:
- inductive type U
- constructor π
- recursive function tr

But… the function is used in the type of the constructor !

Here !

It can be viewed as an instance of a
powerful extension of the inductive
definition scheme

Using universes
Proving 0≠1 Not possible in MLTT as given in the course notes

0=1→ ⊥ mapped to system T would give a term of type
N→⊥

We need a property P : N→Type such that P 0 ▷ T and P (S x) ▷ ⊥

How to proceed ?

Q : N → U Q 0 ▷ nat and Q (S x) ▷ False
then take P = λ x:N. tr (Q x)

Q = RU nat λ p:N. λ R:U . False
Universes in Coq are
a little different

Digression: computational proofs

The conversion rule

t : P t is of type P
t is a proof of P

t : A B : Prop
t : B

A =c B From the logical point of view, A and B
are the same proposition

=c encaptures the computations of the system
for instance, 2+2 =c 4

Proofs by computation
We are used to use this rule:

forall n, n = n + 0

0 = 0 + 0

n = n + 0 -> S n = (S n) + 0

S n = S n

0 = 0

S n = S (n + 0)

Combination of computation and
deduction

Simple purely computational proof
2 + 2 4

2 + 2 = 4

refl 4 : 4 = 4 refl 4 : 2+2 = 4

refl 400 : 200+200 = 4

4 = 4

Why is a number prime ?
5 is prime because :

- 2 does not divide 5
- 3 does not divide 5
- 4 does not divide 5
- 0 does not divide 5
- all other natural numbers are

either 1, 5, or strictly larger
than 5

- and if they are > 5, they do
not divide 5

How do we formalize this in Coq ?

A more computational proof
‣Write test : nat -> bool
‣test n tries to divide n by 2, 3, … , n-1 and returns true iff it finds no divisor
‣prove:
 test_corr : forall n, test n = true -> prime n
what is a proof of prime 5 ?

test_corr 5 (refl true) : prime 5

needs to check refl true : test 5 = true
 needs to compute test 5 ▸ true

Going further

is prime !

When the computer helps us

Largest known prime number in 1951 : (2148 + 1) / 17 (44 digits)

today : 282,589,933 − 1 (24,862,048 digits)

Why such progress ? obvious
But also new mathematics

Pocklington's theorem (1914)

Plan of action

Defining certificates

Formalizing certificates

Checking certificates

How are certificates built ?

is prime !

 proved in Coq!

Going further

This is actually old. Since more technology has been brought in:

- more efficient coding of numbers in Coq

- add more efficient representation of these numbers to Coq

- using more modern results about prime numbers (elliptic curves)

It is not just about the numbers

