Universes à la Martin-Löf

Predicative quantification over types in MLTT
Keep MLTT as presented in the course and add:
U : Type
tr : $\mathrm{U} \rightarrow$ Type
$\pi: \sqcap A: U,((\operatorname{tr} A) \rightarrow U) \rightarrow U$
$\operatorname{tr}(\pi \mathrm{A} B) \quad \triangleright \quad \sqcap \mathrm{x}: \operatorname{tr} \mathrm{A} \cdot \operatorname{tr}(\mathrm{Bx})$
nat : U
eq : $П \mathrm{~A}: \mathrm{U},(\operatorname{tr} \mathrm{A}) \rightarrow(\operatorname{tr} \mathrm{A}) \rightarrow \mathrm{U}$
$\sigma: \sqcap A: U,((\operatorname{tr} A) \rightarrow U) \rightarrow U$
tr nat $\quad \triangleright N$
sum : $U \rightarrow U \rightarrow U$
False : U
$\operatorname{tr}(e q A a b) \quad D a=A b$
$\operatorname{tr}(\sigma A B) \quad D \Sigma x: \operatorname{tr} A \cdot \operatorname{tr}(B x)$
$\operatorname{tr}(\operatorname{sum} A B) \quad D A+B$
tr False $\quad \triangleright \perp$

> U : Type
> tr : U \rightarrow Type
> $\pi: \sqcap A: U,((\operatorname{tr} A) \rightarrow U) \rightarrow U$
> nat : U
> eq : $\Pi \mathrm{A}: \mathrm{U},(\operatorname{tr} \mathrm{A}) \rightarrow(\operatorname{tr} \mathrm{A}) \rightarrow \mathrm{U}$
> $\operatorname{tr}(\pi A B) \quad \triangleright \quad \sqcap x: \operatorname{tr} A \cdot \operatorname{tr}(B x)$
> $\sigma: \sqcap A: U,((\operatorname{tr} A) \rightarrow U) \rightarrow U \quad \operatorname{tr}(\sigma A B) \quad D \Sigma x: \operatorname{tr} A \cdot \operatorname{tr}(B x)$
> sum : $U \rightarrow U \rightarrow U$
> $\operatorname{tr}(\operatorname{sum} A B) \quad D A+B$
> tr False $\quad \triangleright \perp$
> False : U
> tr nat $\quad \triangleright N$
> $\operatorname{tr}(e q A a b) \quad D a=A b$

Idea: if we quantify over U, we quantify over all types ! (except U)
$u: U \quad \operatorname{tr} u \triangleright \cup \quad$ would give Type : Type and a paradox

Embedded Universes

```
U1 : Type
tr: U U }->\mathrm{ Type
```



```
nat: U1
eq: }\Pi\textrm{A}:\mp@subsup{\textrm{U}}{1}{},(\operatorname{tr}\textrm{A})->(\operatorname{tr}\textrm{A})->\mp@subsup{\textrm{U}}{1}{
```



```
sum : U U }->\mp@subsup{U}{1}{}->\mp@subsup{U}{1}{
False : U1
u: U U
\begin{tabular}{|c|c|}
\hline \(\operatorname{tr}(\pi \mathrm{AB}\) ) & \[
\triangleright \sqcap x: \operatorname{tr} A \cdot \operatorname{tr}(B x)
\] \\
\hline tr nat & - N \\
\hline \(\operatorname{tr}(\mathrm{eq} \mathrm{A} \mathrm{a} \mathrm{b} \mathrm{)}\) & \(\triangle \mathrm{a}=\mathrm{A} \mathrm{b}\) \\
\hline \(\operatorname{tr}(\sigma \mathrm{AB})\) & \(D \Sigma x: \operatorname{tr} A \cdot \operatorname{tr}(\mathrm{Bx})\) \\
\hline tr (sU1m A B) & \(\square \mathrm{A}+\mathrm{B}\) \\
\hline tr False & \(\triangleright \perp\) \\
\hline tr u & \(\triangleright \cup\) \\
\hline
\end{tabular}
```

U comprises all types including U but not U 1

Inductive-recursive definition

What is this object U ?

```
U1:Type
tr : U1 -> Type
\pi:ПA:U1,((tr A)->U1)->U1 tr (\piAB) D Пx:tr A.tr (Bx)
```

An inductive definition:

- inductive type U
- constructor π

It can be viewed as an instance of a powerful extension of the inductive definition scheme

- recursive function tr

But... the function is used in the type of the constructor !

Using universes

Proving $0 \neq 1$
Not possible in MLTT as given in the course notes $0=1 \rightarrow \perp$ mapped to system T would give a term of type $N \rightarrow \perp$

We need a property $P: N \rightarrow$ Type such that $P 0 D T$ and $P(S x) D \perp$ How to proceed?
$Q: N \rightarrow U \quad Q 0 \perp$ nat and $\quad Q(S x) D$ False then take $P=\lambda x: N . \operatorname{tr}(Q x)$
$Q=R u$ nat $\lambda p: N . \lambda R: U$. False
Universes in Coq are a little different

Digression: computational proofs

The conversion rule

$t: P$
t is of type P
t is a proof of P
$\frac{t: A \quad B: \operatorname{Prop}}{t: B} A=c B$
From the logical point of view, A and B are the same proposition
${ }^{\text {c }}$ encaptures the computations of the system
for instance, $2+2=c 4$

Proofs by computation

We are used to use this rule:

$$
0=0+0 \quad \Rightarrow \quad 0=0
$$

forall $n, n=n+0$

$$
\begin{gathered}
\mathrm{n}=\mathrm{n}+0 \rightarrow \mathrm{Sn}=(\mathrm{Sn})+0 \\
\mathrm{Snn}=\mathrm{S}(\mathrm{n}+0) \\
\text { and } \\
\mathrm{Sn}=\mathrm{Sn}
\end{gathered}
$$

Combination of computation and deduction

X Simple purely computational proof

$$
\begin{aligned}
& 2+2 \text { refl } 4: 2+2=4 \\
& 2+2=4 \\
& \text { refl } 4: 4=4 \quad 4 \\
& \text { refl } 400: 200+200=4
\end{aligned}
$$

Why is a number prime?

5 is prime because :

- 2 does not divide 5
- 3 does not divide 5
- 4 does not divide 5
- 0 does not divide 5
- all other natural numbers are either 1, 5, or strictly larger than 5
- and if they are > 5, they do not divide 5

How do we formalize this in Coq?

A more computational proof

-Write test : nat -> bool
test n tries to divide n by $2,3, \ldots, \mathrm{n}-1$ and returns true iff it finds no diviso

- prove:
test_corr : forall n, test $n=$ true \rightarrow prime n
what is a proof of prime 5?

```
test_corr 5 (refl true) : prime 5
```

needs to check refl true : test $5=$ true needs to compute test 5 true

Going further

2855425422282796139015635661021640083261642386447028891992474566022844 0039060065387595457150553984323975451391589615029787839937705607143516 9747221107988791198200988477531339214282772016059009904586686254989084 8157354224804090223442975883525260043838906326161240763173874168811485 9248618836187390417578314569601691957439076559828018859903557844859107 7683677175520434074287726578006266759615970759521327828555662781678385 6915818444364448125115624281367424904593632128101802760960881114010033 7757036354572512092407364692157679714619938761929656030268026179011813 2925012323046444438622308877924609373773012481681672424493674474488537 7701557830068808526481615130671448147902883666640622572746652757871273 7464923109637500117090189078626332461957879573142569380507305611967758 0338084333381987500902968831935913095269821311141322393356490178488728 9822881562826008138312961436638459454311440437538215428712777456064478 5856415921332844358020642271469491309176271644704168967807009677359042 9808909616750452927258000843500344831628297089902728649981994387647234 5742762637296948483047509171741861811306885187927486226122933413689280 5663438446664632657247616727566083910565052897571389932021112149579531 1427946254553305387067821067601768750977866100460014602138408448021225 053689054793742003095722096732954750721718115531871310231057902608580607

When the computer helps us

$$
\begin{aligned}
& \text { Largest known prime number in } 1951:\left(2^{148}+1\right) / 17 \quad(44 \text { digits }) \\
& \text { today : } 2^{82,589,933}-1(24,862,048 \text { digits })
\end{aligned}
$$

Why such progress ? obvious
But also new mathematics

Pocklington's theorem (1914)

Let $n>1$ and natural numbers a, $\left(p_{1}, \alpha_{1}\right), \ldots,\left(p_{k}, \alpha_{k}\right) ; n$ is prime if :

$$
\begin{align*}
p_{1} \ldots p_{k} & \text { are }
\end{aligned} \begin{aligned}
& \text { prime numbers } \tag{0}\\
&\left(p_{1}^{\alpha_{1}} \ldots p_{k}^{\alpha_{k}}\right) \mid \tag{1}\\
& a^{n-1}=1(n-1) \tag{2}\\
&\forall i \in\{1, \ldots, k\} \bmod n) \tag{3}\\
& \operatorname{gcd}\left(a^{\frac{n-1}{p_{i}}}-1, n\right)=1 \tag{4}\\
& p_{1}^{\alpha_{1}} \ldots p_{k}^{\alpha_{k}}>\sqrt{n} .
\end{align*}
$$

$a, p_{1}, \alpha_{1} \ldots, p_{k}, \alpha_{k}$ is a Pocklington certificate for n.

Plan of action

- prove Pocklington's theorem : done by

Oostdijk and Caprotti (2001)

- define a data-structure for representing certificates
- write a certificate checker in Coq, prove it correct
- build certificates outside Coq
- Sit back and relax

Defining certificates

A certificate for n is some tupple : $a, p_{1}, \alpha_{1}, \ldots, p_{k}, \alpha_{k}$.
self-contained certificate : recursively add certificates for each p_{i} :

$$
c=\left\{n, a,\left[c_{1}^{\alpha_{1}} ; \ldots ; c_{k}^{\alpha_{k}}\right]\right\}
$$

a certificate for 127 is :
$\{127,3,[\{7,2,[\{3,2,[(2$, prime2) $)] ;$ (2, prime2) $]\} ;$
$\{3,2,[(2$, prime 2$)]\} ;$
(2, prime2)]\}

Formalizing certificates

Share the certificates by flattening the list :

$$
[\{127,3,[7 ; 3 ; 2]\} ;\{7,2,[3 ; 2]\} ;\{3,2,[2]\} ;(2, \text { prime } 2)] .
$$

such a certificate is a mini-data-base containing all prime numbers used in proving that n is prime.

Checking certificates

$\forall l$, Check $l=$ true $\Rightarrow \forall c \in l$, prime $(n c)$

recursion over the list (certificate) ; test the computational conditions.
only difficulty : time\&space of the calculations
Inductive positive : Set :=
| xH : positive
| xO : positive -> positive
| xI : positive -> positive.
$a^{n-1}=1(\bmod n) \quad$ main trick: keep things small by calculating modulo n

How are certificates built?

a C program builds the certificate and prints it as a Coq term.
Different recipes :
generic : find a factorization using ECM (Elliptic Curve Library)
Mersenne : for $2^{m}-1$. various tricks $2^{n}-1-1=2\left(2^{n-1}-1\right)$
and $2^{2 p}-1=\left(2^{p}-1\right)\left(2^{p}+1\right), 2^{3 p}-1=\left(2^{p}-1\right)\left(2^{2 p}+2^{p}+1\right)$;
help find a decomposition.
Lucas criterion
Proth numbers
Can be the critical step.
For random prime numbers, up to 200 digits.
For the largest Mersenne primes we treat, some hack was needed.

2855425422282796139015635661021640083261642386447028891992474566022844
 97472211079887911982009884 81573542248040902234429758 92486188361873904175783145 76836771755204340742877265 69158184443644481251156242 77570363545725120924073646 29250123230464444386223088 77015578300688085264816151 74649231096375001170901890 03380843333819875009029688 98228815628260081383129614
 009904586686254989084 240763173874168811485 018859903557844859107 327828555662781678385 802760960881114010033 656030268026179011813 672424493674474488537 622572746652757871273

> is prime! 585641592133284435802064 98089096167504529272580 C proved in Coq! 569380507305611967758 322393356490178488728 215428712777456064478 3967807009677359042 3649981994387647234 5742762637296948483047509171741861811306885187927486226122933413689280 5663438446664632657247616727566083910565052897571389932021112149579531 1427946254553305387067821067601768750977866100460014602138408448021225 053689054793742003095722096732954750721718115531871310231057902608580607

Going further

This is actually old. Since more technology has been brought in:

- more efficient coding of numbers in Coq
- add more efficient representation of these numbers to Coq
- using more modern results about prime numbers (elliptic curves)

It is not just about the numbers

Some theorems seem non-computational in nature; yet their (known) proofs rely on heavy computations.

- The four color theorem (1976) done in Coq
- The Kepler conjecture (Thomas Hales, 1998)

Interesting because the exposition of the
arguments mixes mathematics and ad-hoc
programs; both sophisticated.
there is a real problem of verification standarts

