Foundations of formal proof systems

Benjamin Werner
Ecole Polytechnique

MPRI
2-7-1

2023

How do we define mathematics?

All humans are mortal, Socrates is human, thus Socrate is mortal.
correction : syntaxic criterion

$$
\frac{\vdash A \Rightarrow B \quad \vdash A}{\vdash B}
$$

The stones to build mathematical proofs

$$
\begin{array}{r}
\frac{\vdash \forall x . H(x) \Rightarrow M(x)}{\vdash H(s) \Rightarrow M(S)} \tag{S}\\
\vdash M(S)
\end{array}
$$

A mathematical proof is a construction

Birth of modern mathematical logic

Mathematical truth defined through totally objective rules
1872 : The Begriffsschrift of Frege

mechanical verification

$$
\text { proof }=\text { tree structure }
$$

A century later

Mechanical verification
becomes real

First proof system : Automath (1968)

N. G. de Bruijn
\square
Formal proofs are actually built.

Today
A modern proof system : Coq

- Same principle
- More modern formalism

What do we want from a formalism

Before (informal proofs) : we want the formalism to be expressive (many theorems)

Now (formal proofs) we want also :

- Concise proofs
- Close to our intuition (no spurious syntactical hacking)
- ...

This course : study formalisms with these aims in mind

First-order logic - language

A set of variables: x, y, z, \ldots
A set of function symbols : f, g, h, \ldots each function symbol has an arity (number of arguments).
A set of predicate symbols: $A, B, C, P, R \ldots$ each with an arity.
Objects :

- a variable is a term,
- if f is of arity n and t_{1}, \ldots, t_{n} are terms, then $f\left(t_{1}, \ldots, t_{n}\right)$ is a term.

Propositions:

- if P is of arity n then $P\left(t_{1}, \ldots, t_{n}\right)$ is a proposition
- is A and B are propositions,
$A \wedge B, A \vee B, A \Rightarrow B, \perp, \forall x \cdot A, \exists x . B$ are propositions.

Examples

Arithmetic
Function symbols: $0, S,+, \times$
Predicate symbol : =

Set Theory
Predicate symbols : $\in,=$

A theory is:

- A language (functions + predicate symbols)
- A set of axioms (propositions of the language)

Axioms of arithmetic :

$$
\begin{array}{ll}
\forall x, 0+x=x & \forall x, 0 \times x=0 \\
\forall x y, S(x)+y=S(x+y) & \forall x y, S(x) \times y=y+x \times y \\
\forall x, \neg(0=S(x)) & \\
\forall x y, S(x)=S(y) \Rightarrow x=y & \\
P(0) \wedge(\forall x, P(x) \Rightarrow P(S(x))) \Rightarrow \forall x, P(x) . \\
\forall x, x=x \\
\forall x y, P(x) \wedge x=y \Rightarrow P(y) .
\end{array}
$$

Truth : natural deduction

Γ set of propositions
$\Gamma \vdash A \quad A$ is provable unde hypothesises+axioms Γ

$$
\begin{gathered}
\frac{A \in \Gamma}{\Gamma \vdash A}(\mathrm{Ax}) \\
\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \wedge B}(\wedge-\mathrm{I}) \quad \frac{\Gamma \vdash A \wedge B}{\Gamma \vdash A}\left(\wedge-\mathrm{E}_{1}\right) \quad \frac{\Gamma \vdash A \wedge B}{\Gamma \vdash B}\left(\wedge-\mathrm{E}_{2}\right) \\
\frac{\Gamma \vdash A}{\Gamma \vdash A \vee B}\left(\vee-\mathrm{I}_{1}\right) \quad \frac{\Gamma \vdash B}{\Gamma \vdash A \vee B}\left(\vee-\mathrm{I}_{2}\right) \\
\frac{\Gamma \vdash A \vee B \quad \Gamma, A \vdash C \quad \Gamma, B \vdash C}{\Gamma \vdash C}(\vee-\mathrm{E}) \\
\frac{\Gamma, A \vdash B}{\Gamma \vdash A \Rightarrow B}(\Rightarrow-\mathrm{I}) \quad \frac{\Gamma \vdash A \Rightarrow B \quad \Gamma \vdash A}{\Gamma \vdash B}(\Rightarrow-\mathrm{E})
\end{gathered}
$$

$$
\begin{gathered}
\frac{\Gamma \vdash A}{\Gamma \vdash \forall x \cdot A}(\forall-I) \quad \text { if } x \text { not free in } \Gamma \\
\frac{\Gamma \vdash \forall x \cdot A}{\Gamma \vdash A[x \backslash t]}(\text { forall-E }) \\
\frac{\Gamma \vdash A[x \backslash t]}{\Gamma \vdash \exists x \cdot A}(\exists-I) \\
\frac{\Gamma, A \vdash B \quad \Gamma \vdash \exists x \cdot A}{\Gamma \vdash B}(\exists-\mathrm{E}) \text { if } x \text { not free in } \Gamma, B
\end{gathered}
$$

$$
\frac{\Gamma \vdash \perp}{\Gamma \vdash A}(\perp-\mathrm{E})
$$

(this gives intuitionistic logic

$$
\overline{\Gamma \vdash A \vee \neg A}(\mathrm{EM})
$$

(this gives classical logic)

Relating correctness and truth : models and semantics

A set \mathcal{U} (universe)
For every f of arity n, a function $|f|: \mathcal{U}^{n} \rightarrow \mathcal{U}$
For every P of arity n, a function $|P|: \mathcal{U}^{n} \rightarrow\{0,1\}$ (equivalently $\left.|P| \subset \mathcal{P}\left(\mathcal{U}^{n}\right)\right)$
Given any \mathcal{I} mapping variables x to \mathcal{U} we define $|t|_{\mathcal{I}} \in \mathcal{U}$ by :

- $|x|_{\mathcal{I}} \equiv \mathcal{I}(x)$
- $\left|f\left(t_{1}, \ldots, t_{n}\right)\right|_{\mathcal{I}} \equiv|f|\left(\left|t_{1}\right|_{\mathcal{I}}, \ldots\left|t_{n}\right|_{\mathcal{I}}\right)$

Given any \mathcal{I} we define $|A| \in\{0,1\}$ by :

- $\left.P\left(t_{1}, \ldots, t_{n}\right)\right|_{\mathcal{I}} \equiv|P|\left(\left|t_{1}\right|_{\mathcal{I}}, \ldots\left|t_{n}\right|_{\mathcal{I}}\right)$
- $|A \wedge B|_{\mathcal{I}} \equiv|A|_{\mathcal{I}} \wedge|B|_{\mathcal{I}}$
- similar for $\vee, \Rightarrow, \perp \ldots$
$-|\forall x . A|_{\mathcal{I}} \equiv \min _{\alpha \in \mathcal{U}}|A|_{I_{\mathcal{I} ; \leftarrow \alpha}}$
- $|\exists x . A|_{\mathcal{I}} \equiv \max _{\alpha \in \mathcal{U}}|A|_{\mathcal{I} ; \times \leftarrow \alpha}$ (this is very much classical logic)

Model of a theory

A model is a triple : \mathcal{U}, interpretation of $f \mathrm{~s}$, interpretation of $P \mathrm{~s}$. It is a model of a theory \mathcal{T} if for any $A \in \mathcal{T},|A|_{\mathcal{I}}=1$ (for any \mathcal{I} since A is closed)

Correctness : If $\Gamma \vdash A$, and $\forall B \in \Gamma,|B|_{\mathcal{I}}=1$, then $|A|_{\mathcal{I}}=1$. proof : quite straightforward (good exercise)

Coherence : There is no proof of $\mathcal{T} \vdash \perp$ (easy consequence of correctness)

Completeness: If for any model validating $\Gamma,|A|_{\mathcal{I}}=1$, then $\Gamma \vdash A$ is provable.
proof : more difficult (Gödel's PhD)

- Relates correctness with truth
- incompleteness : limit of «truth» in math

An extension of first-order logic

Deduction modulo : we add rewrite rules to the language

$$
\begin{aligned}
0+x & \triangleright x \\
S(x)+y & \triangleright S(x+y) \\
O \times x & \triangleright 0 \\
S(x) \times y & \triangleright y+x \times y
\end{aligned}
$$

we allow reasoning modulo the rewrite rules :

$$
\frac{\Gamma \vdash \phi}{\Gamma \vdash \psi} \text { if } \phi={ }_{R} \psi
$$

How to prove $2+2=4$?

Replacing more axioms by rewrite rules

How to ensure $0 \neq 1$?

$$
\forall x .0 \neq S(x)
$$

Add a new predicate symbol EQZ

$$
\begin{array}{rll}
\operatorname{EQZ}(0) & \triangleright & \top \\
\operatorname{EQZ}(S(x)) & \triangleright & \perp
\end{array}
$$

Exercise : finish the proof Important : avoiding messy rewrite rules $(A \wedge B \triangleright \perp \ldots)$

Replacing more axioms by rewrite rules(2)

How to ensure $\forall x \cdot \forall y \cdot S(x)=S(y) \Rightarrow x=y$?
(injectivity of S)
Add a new function symbol pred

$$
\begin{array}{rlll}
\operatorname{pred}(S(x)) & \triangleright & x & \\
\operatorname{pred}(0) & \triangleright & 0 & \text { (or whatever) }
\end{array}
$$

Exercise: finish the proof

A "simple" presentation of Arithmetic

Rules :

$$
\begin{aligned}
0+x & \triangleright x \\
S(x)+y & \triangleright S(x+y) \\
O \times x & \triangleright 0 \\
S(x) \times y & \triangleright y+x \times y
\end{aligned}
$$

Axioms:

$$
\begin{aligned}
& \forall x \cdot x=x \\
& \forall x \cdot \forall y \cdot x=y \wedge P(x) \Rightarrow P(y) \\
& P(0) \wedge(\forall x \cdot P(x) \Rightarrow P(S(x))) \Rightarrow \forall y \cdot P(y)
\end{aligned}
$$

Cuts in proofs

Another form of dynamics / computation / transformation in proofs

What is a cut?

1. Prove $\forall a . \forall b .(a+b)^{2}=a^{2}+b^{2}+2 a b$ (ends with \forall-intro)
2. Deduces $\forall b .(3+b)^{2}=9+b^{2}+6 b$ (use \forall-elim)

We could have proved (2) directly (following the same scheme as 1)

Logical Cut

An introduction rule followed by the corresponding elimination rule

$$
\frac{\frac{\sigma_{1}}{\Gamma \vdash A} \frac{\sigma_{2}}{\Gamma \vdash B}}{\frac{\Gamma \vdash A \wedge B}{\Gamma \vdash A}(\wedge-\mathrm{e} 1)}(\wedge-\mathrm{i})
$$

Simplifies to :

$$
\frac{\sigma_{1}}{\Gamma \vdash A}
$$

exercise : find the simplification for the other logical cuts

Cut Elimination

- Does this process terminate?
- If we have a proof of $\Gamma \vdash A$, can we find a cut-free proof?

Termination : a major point of this course

Cut-free proofs

Why does it matter to us?

In a cut-free proof, there are only axiom rules above elimination rules (or the EM)

If a proof is cut-free, without axiom and constructive, it ends with an introduction rule.

A proof of $\vdash A \vee B$ that is constructive and cut-free ends with $\vee-i 1$ of $\vee-i 2$.

A proof of $\vdash \exists x . A(x)$ that is constructive and cut-free contains a witness.

Cut Free - axiom free proofs

Lemma : a cut free derivation (proof) of [] $\vdash A$ always ends with an introduction rule.

Proof : by induction over the derivation (could be the length of the derivation, but not necessary).

Let us do a few cases.

Why "natural" deduction?

The ND rules aim at corresponding to actual (human) deduction steps. Indeed :

Coq's formalism includes / extends first-order logic with some rewrite/computation rules.

Proofs are built top-down (goal-driven) and basic tactics correspond to ND rules

OK, now we can either :

- code
- stop
- play with a newer prototype

Next week: cuts and constructivity in Heyting Arithmetic

