MPRI
 $$
2-7-1
$$

Benjamin Werner

Cuts in Heyting Arithmetic

Sept. 2023

A presentation of Heyting Arithmetic

Axioms

$$
\begin{aligned}
& \forall x \cdot x=x \\
& \forall x \cdot \forall y \cdot x=y \wedge P(x) \Rightarrow P(y)
\end{aligned}
$$

$$
P(0) \wedge(\forall x \cdot P(x) \Rightarrow P(S(x)) \Rightarrow \forall y \cdot P(y)
$$

closed normal object:
$0, S(0), S(S(O)), \ldots$
closed normal atomic proposition $\mathrm{n}=\mathrm{m} \quad$ (T and \perp are not atomic)

Rewrite rules

$$
\begin{array}{rlrl}
0+x & \triangleright x & & 0 \times x \\
S(x)+y \triangleright & \triangleright(x+y) & S(x) \times y & \triangleright x \times y+y \\
& & \\
\operatorname{pred}(S(x)) & \triangleright x & \operatorname{pred}(0) \triangleright 0 & \\
& & \\
\text { EQZ }(S(x)) \triangleright \perp & E Q Z(0) \triangleright T &
\end{array}
$$

Cuts in deduction modulo

Previous presentation: new additional rule

$$
\text { (conv) } \frac{\Gamma \vdash A}{\Gamma \vdash B} \text { if } A=R B
$$

but we do not want it to interfere with cuts.

$$
\begin{aligned}
& \text { luts. } \quad \wedge-i \frac{\Gamma \vdash A}{(\text { conv }) \frac{\Gamma \vdash A \wedge B}{\Gamma \vdash A^{\prime} \wedge B}} \\
& \text { should be a cut } \\
& \wedge-e \frac{\Gamma \vdash A^{\prime}}{\Gamma \vdash}
\end{aligned}
$$

We can rather reformulate the rules:

$$
\wedge-i \frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash C} \text { if } C=R A \wedge B
$$

is now a cut
(we do the same for all rules)

$$
\wedge-i \frac{\Gamma \vdash A}{\wedge-e \frac{\Gamma \vdash A^{\prime} \wedge B}{\Gamma \vdash A^{\prime}}}
$$

Axiomatic Cuts

Equality Cut

$$
\begin{aligned}
& \frac{\forall x \cdot x=x}{t=t} \frac{\sigma_{P}}{P(t)} \\
& P(t)
\end{aligned}
$$

Induction Cut (1)

$\frac{(P(0) \wedge \forall x P(x) \Rightarrow P(S(x))) \Rightarrow \forall y \cdot P(y)}{\frac{\forall y \cdot P(y)}{P(0)}} \frac{\sigma_{0}}{\frac{P \times P(x)}{(0)}}$

Cut Free Proofs

Properties
easy:
If t is a term without free variables, then $t \triangleright{ }^{*} \operatorname{Sn}(0)$

Cut free proofs:
Take A without free variables. Any cut-free proof of A in HA either :

- ends with an introduction
- is refl or t=t (from refl)
- is Leibniz or partial application of $\mathrm{L}: \forall \mathrm{y} . \mathrm{t}=\mathrm{y} \wedge \mathrm{P}(\mathrm{t}) \Rightarrow \mathrm{P}(\mathrm{y}), \mathrm{u}=\mathrm{t} \wedge \mathrm{P}(\mathrm{t}) \Rightarrow \mathrm{P}(\mathrm{u})$
- Is Induction or a partial application of it: $\forall \mathrm{y}$. $\mathrm{P}(\mathrm{y})$
by induction over the structure of the proof (somewhat tedious)

A without free variables. A cut-free proof of A in HA is either :

- ends with an introduction
- is refl or $\mathrm{t}=\mathrm{t}$ (from refl)
- is Leibniz or partial application of $L: \forall y . t=y \wedge P(t) \Rightarrow P(y), u=y \wedge P(t) \Rightarrow P(u)$
- Is Induction of proof partial application: $\forall \mathrm{y} . \mathrm{P}(\mathrm{y})$

Constructivity :

- If \vdash на $A \vee B$, then either \vdash на A or \vdash на B
- if \vdash на $\exists \times . A(x)$ then we can extract n and a proof of \vdash нА $A(n)$

Consider: $\forall x . \exists y . x=y+y \vee x=S(y+y)$

Heyting's semantics

To make the point of constructivity

- a proof of $n=n$ is 0 (some trivial object)
- a proof of $A \wedge B$ is (can be reduced to) (a, b) with $a: A$ and $b: B$
- a canonical proof of $A \vee B$ is (ε, c) with $\varepsilon=0$ and $c: A$ or $\varepsilon=1$ and $c: B$
- a proof of $A \Rightarrow B$ is a computational function f, s.t. if a : A, then $f(a): B$
- a canonical proof of $\exists x . \mathrm{A}$ is a pair ($t, a)$ s.t. a: $\mathrm{A}[x \backslash t]$
- a proof of \forall x.A is a computational function f, s.t. for all $n, f(n): A[x \backslash n]$

Why is arithmetic undecidable?

$\mathrm{t}=\mathrm{u}$ is decidable
In HA, we can prove $\forall x, \forall y, x=y \vee x \neq y$
(which is the good way to state decidability)
Let's do it

If A and B are decidable, so are $A \wedge B, A \vee B, A \Rightarrow B$

Undecidability comes "only" from the quantifiers
Even if for all x, we can determine $A(x)$ or $\neg A(x)$, we do not know whether $\forall x . A(x)$ is true or not

Simple game semantics

Let us keep a first-order language (actually arithmetic) We drop the implication \Rightarrow

For every predicate P we add its negation *P (same arity) We define the negation of any proposition as:

$$
\begin{aligned}
& \neg P\left(t_{1}, \ldots, t_{n}\right) \equiv * P\left(t_{1}, \ldots, t_{n}\right) \\
& \neg(A \vee B) \equiv \neg A \wedge \neg B \\
& \neg(A \wedge B) \equiv \neg A \vee \neg B \\
& \neg \forall x . A \equiv \exists x . \neg A \\
& \neg \exists x . A \equiv \forall x . \neg A
\end{aligned}
$$

Now! Every closed proposition can be viewed as a game! a game between the mathematician and nature

The game

The mathematician plays when the proposition is:

- ヨx.A provides an object t, game becomes $A[x \backslash t]$
- $A \vee B \quad$ chose left or right, game becomes A or B

Nature plays when the proposition is:

- $\forall x$. A provides an object t, game becomes $A[x \backslash t]$
- $\mathrm{A} \wedge \mathrm{B}$ chose left or right, game becomes A or B

The game stops when the proposition is atomic $P\left(t_{1}, \ldots t_{\mathbf{n}}\right)$

- if $P\left(t_{1}, \ldots t_{\boldsymbol{n}}\right)$ is true, mathematician wins
- if $P\left(t_{1}, \ldots t_{n}\right)$ is false, nature wins

A true intuitionistically: mathematician has a winning strategy

Going beyond intuitionistic logic

Remember we have classical logic in sequent calculus by authorizing sequents with several conclusions: $\quad A_{1}, \ldots, A_{\boldsymbol{n}} \vdash B_{1}, \ldots B_{m}$

We go to multigames: $\quad A_{1}, \ldots, A_{n}$
idea: mathematician has to "prove" only one A_{i}

- if nature has to play on at least one A_{i}, it plays
- if not, mathematician plays on one A_{i}
- if A_{i} is $B \vee C$, mathematician can break it without choosing
$B \vee C \leadsto B, C$
- if A_{i} is $\exists x . A$, then mathematician can "keep" the existential for another later attempt $\quad \exists x . A \leadsto \exists x . A, A[x \backslash t]$
 \title{
Excluded Middle in multi-games
}
 \title{
Excluded Middle in multi-games
}
$A \vee \neg A \rightarrow A, \neg A$

Now let us look at A:
if $B \wedge C$, then nature plays B or C if $\mathrm{B} \vee \mathrm{C}$, then nature plays $\neg \mathrm{B}$ or $\neg \mathrm{C}$ if $\forall x . B$, then nature plays $\mathrm{B}[\mathrm{x} \mid t]$ if $\exists x . B$, then nature plays $\neg B[x \mid t]$

$$
\begin{array}{lc}
\text { mathematician plays } \neg \mathrm{B} \text { or } \neg \mathrm{C} \\
\text { mathematician plays } & \mathrm{B} \text { or } \mathrm{C} \\
\text { mathematician plays } & \neg \mathrm{B}[\mathrm{x} \mid \mathrm{t}] \\
\text { mathematician plays } & \mathrm{B}[\mathrm{x} \mid t]
\end{array}
$$

Mathematician wins !
when $\vdash A$ (in classical logic), there is a winning strategy (essentially a termination argument)
see for instance the page of Thierry Coquand about game semantics

Links with Curry-Howard for classical logic

